The histone H4 acetyltransferase MOF uses a C2HC zinc finger for substrate recognition.
نویسندگان
چکیده
Site-specific acetylation of histone H4 by MOF is central to establishing the hyperactive male X chromosome in Drosophila. MOF belongs to the MYST family of histone acetyltransferases (HATs) characterized by an unusual C2HC-type zinc finger close to their HAT domains. The function of these rare zinc fingers is unknown. We found that this domain is essential for HAT activity, in addition to the established catalytic domain. MOF uses its zinc finger to contact the globular part of the nucleosome as well as the histone H4 N-terminal tail substrate. Point mutations that leave the zinc-finger structure intact nevertheless abolish its interaction with the nucleosome. Our data document a novel role of the C2HC-type finger in nucleosome binding and HAT activity.
منابع مشابه
Physical Association and Coordinate Function of the H3 K4 Methyltransferase MLL1 and the H4 K16 Acetyltransferase MOF
A stable complex containing MLL1 and MOF has been immunoaffinity purified from a human cell line that stably expresses an epitope-tagged WDR5 subunit. Stable interactions between MLL1 and MOF were confirmed by reciprocal immunoprecipitation, cosedimentation, and cotransfection analyses, and interaction sites were mapped to MLL1 C-terminal and MOF zinc finger domains. The purified complex has a ...
متن کاملFunctional integration of the histone acetyltransferase MOF into the dosage compensation complex.
Dosage compensation in flies involves doubling the transcription of genes on the single male X chromosome to match the combined expression level of the two female X chromosomes. Crucial for this activation is the acetylation of histone H4 by the histone acetyltransferase (HAT) MOF. In male cells, MOF resides in a complex (dosage compensation complex, DCC) with MSL proteins and noncoding roX RNA...
متن کاملThe Functional Analysis of Histone Acetyltransferase MOF in Tumorigenesis
Changes in chromatin structure and heritably regulating the gene expression by epigenetic mechanisms, such as histone post-translational modification, are involved in most cellular biological processes. Thus, abnormal regulation of epigenetics is implicated in the occurrence of various diseases, including cancer. Human MOF (males absent on the first) is a member of the MYST (Moz-Ybf2/Sas3-Sas2-...
متن کاملStructure and function of histone acetyltransferase MOF.
MOF was first identified in Drosophila melanogaster as an important component of the dosage compensation complex. As a member of MYST family of histone acetyltransferase, MOF specifically deposits the acetyl groups to histone H4 lysine 16. Throughout evolution, MOF and its mammalian ortholog have retained highly conserved substrate specificity and similar enzymatic activities. MOF plays importa...
متن کاملThe Major Cytoplasmic Histone Acetyltransferase in Yeast: Links to Chromatin Replication and Histone Metabolism
We have isolated the predominant cytoplasmic histone acetyltransferase activity from Saccharomyces cerevisiae. This enzyme acetylates the lysine at residue 12 of free histone H4 but does not modify histone H4 when packaged in chromatin. The activity contains two proteins, Hat1p and Hat2p. Hat1p is the catalytic subunit of the histone acetyltransferase and has an intrinsic substrate specificity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- EMBO reports
دوره 2 2 شماره
صفحات -
تاریخ انتشار 2001